

Plymouth University

School of Computing, Electronics and

Mathematics

PRCO304

Final Stage Computing Project

2017/2018

BSc (Hons) Computing and Games

Development

Samuel Lord

10485852

Unity Weather Package

Acknowledgements
I’d first like to thank Marius Varga for his support throughout the course of developing the

package, as Project Supervisor.

Secondly, my fellow Computing and Game Development students for their testing and

feedback.

Finally, Bethany Roberts-Rhodes for her patience and ability to spot my comma-lacking

sentences.

1

Abstract
The present report describes a weather system package for the Unity Game Engine,

intending to offer a robust, open-source alternative to those currently available.

An extensive context is provided, which describes the importance of weather in games and

how procedural content can be beneficial. From this, a background to the project is

detailed, in addition to the objectives and expected deliverables.

An objective breakdown of available software explains why Unity, C# in Visual Studio,

Github, Axosoft and Sandcastle were selected as the software packages used to complete

the project. This is followed by a discussion of the legal, social, ethical and professional

considerations prior to, and throughout the project followed by the process of project

management employed throughout the project.

The architecture of the system is then described, including an overview of code structure

within the Unity game engine and a implemented control structures. A brief summary of

testing by developers is used to show to what extent architecture-related objectives have

been met.

A sprint-by-sprint project breakdown then details the process by which the project came to

fruition. An End Project Report then evaluates the success of the project against the initial

objectives, before a Project Post-Mortem critically evaluates the decisions made throughout

the project.

A brief conclusion then proceeds the various miscellaneous documents in the appendix.

2

1. Table of Contents

1. Table of Contents 3

2. Submission URLs 4

3. Introduction 5

4. Project Context 5

5. Background, Objectives and Deliverables 8

5.1. Background 8

5.2. Objectives 9

5.3. Deliverables 10

6. Software 10

6.1. Engine 10

6.2. IDE 11

6.3. Git 12

6.4. Project Management 12

6.5. Documentation Generation 12

7. Legal, Social, Ethical and Professional Issues 13

7.1. Legal 13

7.2. Social 14

7.3. Ethical 14

7.4. Professional 14

8. Project Management and Method of Approach 14

9. Architecture 15

10. Stages 18

10.1. Sprint 1 - ending 06/02/18 18

10.2. Sprint 2 - ending 14/02/18 19

10.3. Sprint 3 - ending 22/02/18 20

10.4. Sprint 4 - ending 01/03/18 21

10.5. Sprint 5 - ending 08/03/18 22

10.6. Sprint 6 - ending 15/03/18 23

10.7. Sprint 7 - ending 22/03/18 24

10.8. Sprint 8 - ending 29/03/18 24

10.9. Sprint 9 - ending 12/04/18 25

10.10. Sprint 10 - ending 03/05/18 26

3

10.11. Sprint 11 - ending 17/05/18 27

11. End-Project Report 29

11.1. Be free, open-source and reusable without limitation 29

11.2. Be procedural 29

11.3. Be extensible 31

11.4. Be queryable 31

11.5. Be Unity Editor friendly 31

11.6. Further features 32

11.6.1. Manual mode 32

11.7. Product Comparison 32

12. Project Post-Mortem 33

12.1. Objective Delivery 33

12.2. Technology 33

12.3. Project Management and Methodology 33

12.4. Developer Performance and Lessons Learned 34

13. Conclusions 34

14. References 36

15. Appendices 39

Word Count: 10,969

2. Submission URLs
Where appropriate and possible, permissions for the following resources have been set to

public. Where making resources public was not possible, the project supervisor, Marius

Varga, has been sent an invite link or added as a collaborator.

Project Repository

Repository contents on OneDrive

Demo Repository

Demo Repository contents on OneDrive

Demo Build

V1.0 Package Release

Axosoft (Project Management)

Code Documentation

4

https://github.com/Slord6/WeatherSystem/
https://liveplymouthac-my.sharepoint.com/:u:/g/personal/samuel_lord_students_plymouth_ac_uk/EakyzfwRMHtIgiv1Ydaa6poBXpr72HDCeOVrFu6nuZdE4g?e=myx2oG
https://github.com/Slord6/WeatherSystemDemo
https://liveplymouthac-my.sharepoint.com/:u:/g/personal/samuel_lord_students_plymouth_ac_uk/ESswXscX0zRGvyBjX3yl0BYBwtfX2Pb7ZwmQTjmV1h8Aeg?e=slNGNw
https://liveplymouthac-my.sharepoint.com/:u:/g/personal/samuel_lord_students_plymouth_ac_uk/EQ_1Jqkh5-5MvCUsfePf7fEBWCLJu44sGY-MwlYMp-ic9w?e=12f3Ww
https://github.com/Slord6/WeatherSystem/releases/tag/1.0
https://samlord.axosoft.com/
https://www.peloozoid.co.uk/WeatherSystem/Documentation/html/N_WeatherSystem.htm

3. Introduction
Weather is a tool used throughout the game industry for atmosphere, story and realism.

Powerful tools for producing immersive and engaging weather are often not available to

independent and hobbyist developers, due to prohibitive cost or limited feature sets in the

available packages. This project provided the opportunity to release a complete,

open-source alternative for users of the Unity game engine.

The described project is a weather system built as a package for the Unity game engine in

C#. It comprises an object control structure that drives MonoBehaviour-derived components

in a generic way via temperature and intensity values. The system provides an extensible

and queryable interface, which allows developers to implement only the visual elements

and their specific weather controllers. The project has been released open source under the

MIT licence. The present report describes the development process, inclusive of

development tools, design, system architecture and problems and associated implemented

solutions.

4. Project Context
The use of weather a literary device for story-telling and mood-setting is pervasive and has

been used as a tool for hundreds, if not thousands, of years (Schulz, 2015). A simple

example might be the marked difference between a cruise under a starlit sky and a boat

rolling across waves under a troubled, rainswept sky. The tonal difference is clear and sets

the scene for a sequence. The use of weather in fictional media is, in fact, so widespread

that it is difficult to find examples of works where the weather in not used as a tool to

reflect or enhance the content of a scene. This may be associated to the mood changes

caused by weather in day-to-day life. Although the effects of weather, especially sunshine,

on mood are often overstated, it has been shown that sunshine boosts positive moods and

diminish negative moods (Cunningham, 1979). Cunningham found the effect is noticeable

enough to cause a measurable change in behaviour. For example, daily stock returns have

been shown to have better returns on sunny days (Hirshleifer and Shumway, 2001) and

similar weather can cause increased returns for waiting staff in the form of larger tips

(Cunningham, 1979).

It is therefore unsurprising that we see a reflection of these effects in fiction. One example

in gothic literature, where weather is often used as a method to reflect the emotions of the

characters (Epublications.marquette.edu, 2018), is in the first chapter of Jane Eyre, in which

clouds are used as a reflection of Jane’s “sombre” mood (Bronte and Davies, 2006).

However use of this technique is truly ubiquitous in written fiction (Schulz, 2015).

5

Similarly, film has also implemented these techniques. As in the cinematic reimagining of Let

the Right One In (2008), in which snow is used a device to cause disquiet through the

juxtaposition of the soft, glistening flakes falling in the foreground and the still, sober

progression of the opening scene (Nicholls, 2013). Not only does weather provide a parallel

to characters’ inner thoughts but it also presents an often striking backdrop to fictional

media, adding a layer of context to otherwise bland interactions. Further, in visual mediums,

weather presents a palette of colours to contrast or compliment those of the presented

scene. A salient example of this is in the film adaptation of Lord of the Rings: The Two

Towers. When Gandalf arrives at the Battle of Helm’s Deep, leading Éomer and his cavalry,

the sun breaks behind them as they make their charge. A clear contrast to the hoards of

black-cladded Uruk-hai in the valley beneath them (The Lord of the Rings: The Two Towers,

2002).

Games, as a creative medium, are no strangers to the use of weather as pathetic fallacy for

events in their interactive environments. It has been shown that rich weather systems in

virtual environments increase the immersion and realism experienced by players when

compared to their static weather counterparts (Roberts and Patterson, 2017). Realism has

long been a target for the games industry, with the end goal of virtual environments

appearing indistinguishable from the real world (Roberts and Patterson, 2017). From as

early as 1962, when Steve Russell’s Spacewar! (1962) included a backdrop with all the stars

as seen from earth down to magnitude 5 (Markowitz, 1999), to the rich and diverse worlds

seen in Grand Theft Auto V, Far Cry 5 and Kingdom Come: Deliverance. This desire has been

reflected in science fiction in various forms of the well know “Holodeck” from Star Trek: The

ultimate goal of game development (Murray, 1997).

It makes perfect sense that weather would be included in the ever-increasing realism

provided by games. In fact, it has been found that including realistic weather effects in

games may offer more than just graphical realism in that the combination of

“unpredictability” and “compelling simulation” may make the game inherently more “real”

as an experience (Barton, 2008), due to the similarities to everyday life.

Murray (1997) stated, “The more pervasive the sensory representation of the digital space,

the more we feel we are present in the virtual world”. We see this in the more recent

explorations of environments in increasingly impressive virtual reality headsets, and the

matching increase in believability and ‘realness’ in the experiences provided by this

medium. As more experiences and games are created for more immersive mediums, the

requirements for the believability of the environments players enter are only going to

become more demanding, and this includes ambient effects such as the weather.

Hand-crafting weather environments to be consistently realistic may be too time-consuming

or complex to create for all environments in a game. In these instances, a dynamic weather

system may be driven by procedural generation to handle the generation and changes of

6

the weather at runtime, with gradual, realistic changes in weather in a deterministic way.

This presents the illusion of a game world as a living and dynamic virtual space (Barton

2008). Procedural generation allows for a changeable and active system, driving

hand-crafted visuals and, optionally, mechanical changes to the game, based on the current

weather conditions. Procedural generation has been previously shown to be a powerful tool

in creating dynamic game worlds. One of the most popular games of the last decade,

Minecraft , is often cited as an example when discussing procedural generation due to its

generation of worlds that can reach sizes up to that of 8 times the area of Earth (Minecraft

Wiki, n.d.). However, procedurally generated content does not preclude failure. In the case

of No Man’s Sky, a explorative space game in which 18 quintillion planets are procedurally

filled with flora and fauna, received very mixed reviews upon release (Hudson, 2018),

highlighting that dynamic visuals are no replacement for engaging mechanics. This can also

be seen in other games that use weather as not only a visual backdrop, but also an integral

part of gameplay. Playerunknown’s Battlegrounds, utilised weather in its battle-royale

gameplay in the form of rainy and foggy matches. Rain acted as a silencer to player actions,

such as running and firing weapons. This changed the tactics required in those matches

(Kengaskhan, 2018), adding further depth to gameplay. Similarly, foggy matches created

situations in which players would experience more close-combat gameplay due to the

limited view distance (Porreca, 2017; Kengaskhan, 2018). When Playerunknown’s

Battlegrounds removed weather in an update in September 2017, there was widespread

criticism online, including on the game’s own forum (PLAYERUNKNOWN'S BATTLEGROUNDS

Forums, 2018), further illustrating the interesting gameplay weather can create for players.

An update due to be released shortly will be re-adding weather, this time with dynamic,

rather than fixed, weather effects.

Weather effects also impact mechanics in single player games. For example, Frostpunk,

NCAA Football 2008, Dwarf Fortress and Sea of Thieves all use weather to impact gameplay

in mechanics as well as visuals. Frostpunk is a city builder which uses weather as both its

main plot and backdrop as well as for mechanical effect in gameplay. The game takes place

during the summer of 1886 in an alternate-reality, steampunk Britain where the player must

build ‘New London’ in a post-apocalyptic icy tundra. Mechanically, weather affects

gameplay in “deep freeze” events, in which keeping areas at a survivable temperature

becomes a priority, shifting a players focus to increasing generator reach and keeping it fed

with coal, at the cost of other targets (Bertz, 2018).

NCAA Football 2008 utilised live weather data for its American football gameplay, using the

real-world locations of its virtual stadia to accurately depict the weather (Thomas, 2007).

Inclement weather impacts gameplay by affecting the speed at which players can move,

whereas extreme heat negatively impacts stamina. However, weather is not dynamic over

the course of each game, only updated when a new game is created. Dwarf fortress is a

fantasy game in which the player can command a group of dwarves or adventure in a

randomly generated, persistent world (Bay 12 Games, n.d.). The game implements an

7

extensive dynamic weather system which tracks wind, humidity and air masses to simulate a

realistic weather system. The system includes both real and fantasy weather, including rain,

snow, evil clouds and evil rain. Weather is an extensive component of Dwarf fortress with

various mechanics affected by different weather types. A dwarf that is caught in the rain, for

example, has an “unhappy thought” sentiment applied to it, which can cause physical costs

to dwarves, potentially to lethal effect. Rain also impacts the game world, filling “murky

pools” as precipitation occurs allowing for player-made wells to provide dwarves with a

water source. Snow and ice also has impacts on the game-world. When water enters a

freezing climate ice is formed, which can kill any creatures caught inside of it. Furthermore,

dwarves caught in snowstorms can freeze to death if the player does not dig out a warm

place for dwarves to wait out storms. The fantasy weather events add further mechanics:

Evil rain, in addition to the “unhappy thought” trait, may also apply fevers and vomiting to

dwarves alongside the chance to cause wounds and injuries to creatures and dwarves

caught in the downpour, although the specific effects depends on the liquid that forms the

rain. Evil clouds cause more serious symptoms that evil rain, in certain cases creating

zombies from creatures trapped inside which are more dangerous than their living

counterparts (The Dwarf Fortress Wiki, n.d.).

Sea of Thieves, Rare Studio’s recent multiplayer pirate game, includes roaming storms in

their game worlds. The unlucky ship caught in a storm, whose crew did not notice the

approaching dark clouds and rising waves, must be constantly repaired and water bailed

from under the deck. These storms were added to exaggerated the vulnerability and

exposure felt by players in an exhilarating way (Rare, 2017). This is achieved not only by the

damage sustained whilst in storms, but also by the currents of the storm dragging the ship

in different directions. This means that players have to actively keep the ship heading in

their desired direction. The addition of storms to Sea of Thieves adds enjoyable, emergent

gameplay and as such, storms have been described as being as thrilling as the missions

(Frushtick, 2018).

With the realism and immersion of games being benefited by weather systems, but those

systems often being a secondary consideration (Roberts and Patterson, 2017) and taking up

valuable time and resources to produce, it may be the case that smaller development

studios, independent developers and hobbyists neglect them in favour of other game

systems deemed to be more integral to the release of their games. Furthermore, it may be

beneficial to those parties to utilise pre-built solutions for their needs, hence the inception

of this project.

8

5. Background, Objectives and Deliverables

5.1. Background

As discussed, the use of weather in games is ubiquitous, albeit with varying levels of impact

in both gameplay mechanics and visuals. As such, packages for game engines such as Unity,

which provide import-and-go weather solutions, are available. Due to the potential

complexity of weather systems, which often include seasonal changes and day-night cycles,

the quality and accompanying price tag of available packages varies broadly. Therefore, the

more complete weather packages can be prohibitively expensive for hobbyist and

independent developers and the equivalent free packages are either closed-source at the

point of download and may, understandably, lack the more advanced features provided by

the more expensive counterparts. To ascertain the current state of available weather

systems, a comparison of Unity weather packages was conducted as part of the project

initiation process (Table 1). The analysis highlighted the limitations of cheaper packages; no

queryability, lack of audio support and limited terrain interaction.

With the current state of weather solutions being as it is, this project aimed to produce an

open-source alternative, offering the oft-missed features of cheaper solutions. The open

9

source nature of this project also means that community-driven pull requests with fixes and

new features is a possibility, resulting in a more robust and feature-rich solution over time

(Schindler, 2007).

5.2. Objectives

As described in the project initiation document, this project aimed to produce a Unity

package that delivered on the following requirements (Appendix D.1):

1. Be free, open-source and reusable without limitation

2. Be procedural

a. Will provide a platform from which weather patterns can be new and

interesting on each playthrough of any game using the system.

b. Will be seeded and therefore will generate reproducible weather patterns at

the discretion of the developer, and enable easier testing.

c. Weather will vary across the game world at any given moment, adding more

realism. This is in contrast to the researched products which unanimously had

ubiquitous weather throughout the game world.

3. Be extensible

a. Will be designed so as to be extensible by developers using the platform.

b. Will be well documented so as to be easy to use for other developers.

4. Be queryable

a. Will allow developers to request information about the weather at specific

locations and times. This allow for games which use information such as

temperature to, for example, change the look of the player or environment in

different conditions or provide information to survival-like games.

5. Be Unity Editor friendly

a. Changes to initialization values will not require editing code and will be

available as sliders/editable text boxes in the Editor.

b. As and when required, custom editors may be written to automate repetitive

tasks.

5.3. Deliverables

The project will culminate in the delivery of a weather system package for the Unity game

engine. The package will include a solution to the described objectives and an example Unity

scene with a sample setup. The project code will be open-sourced at the culmination of the

project.

10

6. Software

6.1. Engine

There are a wide variety of game engines available for use and several were considered for

this project. Engines not able to build for Windows and OSX were immediately discounted as

possible choices, as these were the target platforms for the weather system. Unity was an

obvious choice due to the extent to which its use has been covered during the course.

However, Unreal Engine, CryEngine and Unity Engine were all considered due to their 3D

support and free or royalty-based licences.

Unreal Engine was a promising option having been awarded the “most successful video

game” by Guinness World Records. Also, having removed the proprietary UnrealScript

scripting language in favour of C++ for version 4 of the engine, there was less of a learning

curve than in prior version due to the author’s experience with C++. Unreal also offers visual

scripting with “Blueprints”, although lack of experience with this feature would likely result

in a steep learning curve. Finally, Unreal’s focus on photorealism was considered, however

the objectives of this project on the system structure over visuals meant this wasn’t a

deciding factor.

CryEngine also advertises “breathtaking visuals” which, again, although a potential positive

for users of the final system was not a direct benefit to the completion of the project.

CryEngine offers C++, C# and Lua bindings to its engine API, all three of which the author has

varying levels of experience with, offering a lesser learning curve to that of Unreal.

However, CryEngine requires custom formats to import textures and objects, requiring

extensions on third party applications to be able to create game assets. This barrier to entry

would limit the work possible in University Laboratories and therefore the productivity over

the course of the project.

Unity was ultimately selected as the game engine for this project for two main reasons.

Firstly, the author has a deep understanding of Unity and C#. With the limited time for the

project, the time overheads of gaining experience in a new engine would be detrimental to

the goals of the project. Secondly, Unity has a large independent and hobby developer

community who may benefit from the resultant software package. The component-based

nature of Unity may also offer benefits for developers who use the package in that custom

components can be interfaced with the system structure purely with the drag-and-drop

functionality in the editor. Finally, Unity supports direct import of standard asset formats

and has a wide variety of third-party assets available to showcase the project.

11

6.2. IDE

Visual studio was a natural choice as an IDE alongside Unity development as Unity comes

packaged with Visual Studio Community Edition. Additionally, Visual Studio’s debugging

features integrate with Unity for more advanced debugging, for example breakpointing.

Alongside this, Visual Studio is a well supported IDE and endorsed by Microsoft, the

developer of C#. Alternatives to Visual Studio were considered such a MonoDevelop and

Visual Studio Code however the debugging was lacking (non-existent in the case of Visual

Studio Code) in comparison to Visual Studio. This is shown Unity’s recent termination of

MonoDevelop support in favour of Visual Studio.

6.3. Git

GitHub was selected as the host for the project code repository due to its status as the

industry standard (Gousios et al., 2014). GitHub also provides a GUI git tool, GitHub Desktop,

for easier management of the repository. Furthermore, laboratory computers on the

university premises already had GitHub Desktop installed, therefore allowing for project

work in university with greater ease than would be the case with other considered solutions,

such as Bitbucket and its tool Sourcetree.

6.4. Project Management

There are numerous options for project management software, many tailored to specific

project management methodologies. Axosoft was selected as the project management tool

due to its tight integration with the management method of the project; Agile/Scrum. The

author was also already familiar with the workflow of this tool from previous projects and so

Axosoft was the natural choice. Also, by running in the browser (alongside recent mobile

support), Axosoft allowed ease-of-use independent of working location. Trello was also

12

considered as a more lightweight alternative, however the lack of time estimation and

SCRUM support made it a significant inferior project.

6.5. Documentation Generation

There are limited options available when generating documentation from XML-style

comments in Visual Studio. This is arguably because the most common tool, Sandcastle,

fulfills all the needs of developers.

Sandcastle is made up of two parts, Sandcastle tools and the Sandcastle Help File Builder.

Sandcastle tools are command-line tools for generating help files by combining the XML

comments in the source code with reflection on the built software or class library. The

Sandcastle Help File Builder wraps all these tools into an easy-to-use GUI, which allows

project settings to be saved for later regenerating new documentation with the same

settings. Sandcastle supports several output formats, most notably as a set of HTML files

which can be made accessible on the web. This has obvious benefits for this project where

developers may need to access code documentation and that documentation may need to

be periodically updated. For this reason, Sandcastle was selected as the documentation

generator for this project.

7. Legal, Social, Ethical and Professional Issues

7.1. Legal

The primary legal concerns in this project relate to the open-source nature of the codebase,

and the accompanying licensing. The MIT licence (Appendix H.1)(Opensource.org, n.d.) was

selected to release the assets created within the scope of this project. This is due to the fact

that the MIT licence is permissive, providing very little restriction on the use and

redistribution of the produced code. It also frees the producer of code and assets under the

licence from liability and explicitly removes any warranty on produced elements. There are

no trademarks related to this project and as such, no consideration has been mode for trade

marks in open source works.

Second, the licences of third party assets used in the project were closely adhered to, in

order to not break the terms of the licence. This included maintaining the licence for the

third party assets in the repository and showing accreditation where required. For example,

The Volumetric Lighting code was distributed under the MIT Licence and as such required

the licence to be displayed with that code in the project repository. The licence was included

as a header in each script to comply with those terms.

13

Furthermore, the licences of the software used in producing the project are also of note, as

some software licences limit the manner in which elements produced thereof may be used.

This influenced the choice of software used. For example, Unity explicitly grants developers

rights to the content they create using its engine: “you fully own the content you create with

a Unity subscription, also if you stop subscribing to Unity”.

Finally, at the conclusion of this project, the package will be submitted to the Unity Asset

Store and so there was also consideration given to the licences granted to developers

downloading the package from this source, given the project’s approval to the store. This is

of little consequence however, due to the liberal licence under which the source code is

released on Github.

7.2. Social

The software produced as a result of this project is unlikely to have any major social impact.

There is a social element to be consider, however, in the form of the issue tracking within

the repository. There is an onus on the owner of a repository, at least to some extent, to

moderate the content of the issue tracker. However, GitHub does not support deleting

issues in an issue tracker and so the moderation that could be performed would be limited.

7.3. Ethical

There are limited ethical considerations for this project. In the project initiation document

(Appendix B.1.2), it was stated that this project would conform to the approved PRCO304

ethics application. This remains true. Usability testing on the system was conducted on the

final system by final stage students, in order to determine that the project had met its

objectives. The submissions were anonymous and conformed to the requirements as laid

out in the ethics application.

The only other ethical concern to consider is that with the software being released under an

open source licence, it is likely that the software will be used by other developers in the

future. As such, there may be a moral obligation on the part of the publishing party to

ensure the software works and is usable or to provide support (Gotterbarn, n.d.).

7.4. Professional

Professional considerations throughout the project used the BCS, The Chartered Institute for

IT’s Code of Conduct (Bcs.org, n.d.).

14

8. Project Management and Method of Approach
As discussed, Axosoft was chosen as the project management tool for this project due to its

strong conformance to the Scrum agile methodology. However, Scrum was not the first

methodology considered for this project. Initially, the Cowboy methodology was considered,

due to its focus on solo development and iterative development. Cowboy, however, also has

a strong emphasis on client interaction, and although the project supervisor could have

fulfilled those requirements, it was deemed a better fit for the project to utilise a more

robust method in Scrum.

Due to the existing structure of the project, sprints were initially set to one week intervals,

starting on a Friday. This allowed the project to neatly align with the weekly highlight

reports that were produced. At the beginning of each sprint, work items were created in the

backlog to be completed by the end of the sprint, and items not completed in the last sprint

were rolled over into the new sprint. New items, rather than being given points as is usual in

Agile, were given time estimates in much the same manner (Cheng, 2012). This was useful

when used alongside Axosoft’s item allocation feature in which time estimates were used to

calculate if the work items in the current sprint could be completed in the remaining

available time. Items were also given a classification - task, bug or user story. This allowed

for easier management of the sprint and prioritisation of the work to be done.

It is usual that alongside agile methodology in software development, source control is used

with a branching strategy. In this instance, git was used as the source control, however no

strict branching strategy was imposed. This was driven by there only being a single

developer working on the project, and as such only one feature or bug could be worked on

at a time. As such, at the project’s inception, a feature-based branching strategy was

deemed to be unbeneficial to the project.

Coding practices were maintained with a “Best Practices” document (Appendix G.1), which

defined the way in which code should be written to conform to a coherent style across the

code base. Furthermore, documentation was ensured to be pervasive throughout the code,

with all methods and classes having XML documentation. This allows for documentation

generation to be automated. Further in-line comments were made around unclear or

obtuse code sections.

9. Architecture
Working within a game engine provides a base structure to build from without repeating

large amounts of boilerplate code for every project. Equally, there are some limitations

15

imposed by utilising any third-party code or platform, game engines included. In Unity’s case

this means conforming to a component-based model.

In software engineering, components are an encapsulation of a set of functions as a module,

resource or package. Each system process is its own component with all of the data and

functions within a component being semantically linked, in much the same way as classes in

traditional object oriented programming. This allows for a modular system in which

components can be reused in different contexts. For example, in Unity, a GameObject (the

base class for all scene objects) for an enemy may have a “Health” component which allows

for damage to be taken from player attacks and destroys the object when the health is less

than zero. Equally, the same component could be used for destructible objects or the player

itself, providing the same functionality.

In Unity, all components must inherit from MonoBehaviour somewhere in their parent

structure. MonoBehaviour provides a number of in built methods that are called in a specific

order at runtime (Docs.unity3d.com, 2018). For example, Awake() is called as soon as the

script instance is being loaded, Update() is called every game tick and OnDestroy() is called

when an object is destroyed. Also, MonoBehaviours are kept track of by Unity, allowing for

MonoBehaviours to find other components at runtime.

Unity also provides an alternate parent class, ScriptableObject, for objects that do not need

to be attached to GameObjects, and can be treated as assets. These objects are persistent

between game instances and offer a powerful interface for settings or uses such as

inventory management, or any data container. They also interface well with Unity’s

serialization system. ScriptableObjects lack many of the methods provided by

MonoBehaviour as they are not designed to be updated at runtime.

Both Monobehaviours and ScriptableObjects have been utilised in the creation of the

weather system, and the design has been shaped by the strengths and limitations of these

predefined structures.

The architectural design of the weather system was driven by the core objectives, especially

the extensibility, query-ability and editor-friendliness of the developed system. The

editor-friendliness of the system was achieved with custom editors for the produced

behaviours. Perhaps counter-intuitively, the Unity editor is largely written in the Unity game

engine, using the same APIs exposed to game developers. This means that the editor is

entirely scriptable meaning custom editor windows and component editors can be written

to simplify or automate tasks. In the case of the present project, several editor scripts were

written. Firstly, the enum for the available types of weather has its own editor in Unity,

which does metaprogramming to allow developers to easily add, remove or edit weather

types without having to modify internal elements of the final package. Also, custom or

generic data types (except for List<T>), such as the DoubleDictionary created for this

project, are not serializable by Unity. In instances where they are required, custom editors

must be produced to correctly display and edit those objects. The DoubleDictionary<T,U,V>

16

object created to lookup values using two keys was not serializable by Unity due to the fact

that it supported generic types and used a dictionary of dictionaries as its underlying data

structure. In this instance the WeatherLookup object, which is internally a DoubleDictionary

object, required a custom editor for selecting values for each key pair. Further, due to the

serialization limitation, the DoubleDictionary has to be converted into List<T> objects on

serialization and then, on deserialization, unpacked back into a DoubleDictionary.

The extensibility of the system was important to ensure that developers using the system

could further build out specialised changes that are pertinent to the game they are creating.

This was achieved with a hierarchical structure in which data could be passed down, being

mutated as appropriate at each level. At its core, the weather system uses an intensity value

to drive each weather element, eg. precipitation, wind etc. In the resultant implementation,

a data object is passed down the hierarchy , where intensity values are modified at each

level by curves (Figure 1). Eventually, the data is passed to MonoBehaviour-derived

components which control the visual elements related to each weather element, using the

intensity value and associated data, i.e temperature and humidity. However these values

could be used for any purpose a game developer saw fit, and would only require inheriting

from an IntensityDrivenBehaviour. Several example derived controllers for specific use cases

such as shaders, particle effects and audio have all been included as example

implementations with the package. Furthermore, due to the structure deriving from a

central WeatherManager object, queries for absolute data (temperature, humidity and

17

intensity) for a specific location can be made

directly to that object (Figure 2). This allows

extension of the system, especially in

procedural mode, to drive any weather-affected

element of the game world. Queryability was

also maintained at the lowest level of the

procedural weather. This was achieved by

keeping the weather generation as simple as

possible whilst also maintaining the believability

of the produced weather. Primarily, this

resulted in a single, static class for Perlin-based

generation, which contained arbitrary offsets

for the noise generation for each weather

element - temperature, humidity, intensity, and

wind. Unity’s Mathf library already included a

Perlin noise implementation and this was deemed suitable for the project’s objectives.

However, to meet the objective to be seeded, to allow for easier testing and repeatable

weather patterns, some additional boilerplate code was required. This involved the addition

of a fixed value alongside the calculated position, in the call to the perlin noise method.

Additionally, to ensure that each weather element sampled the noise at a different position

(and therefore did not consistently match), the aforementioned fixed offsets were used as a

modifier to the queried position. Finally, the scale at which the noise was queried was made

modifiable from WeatherManager, allowing for a realistically scaled weather ‘fronts’

irrespective of gameworld size or scale.

Due to the limitation of ScriptableObjects not having an Update() call to dynamically change

at runtime, the structure of intensity flow is not fixed at compile time. Rather,

IntensityDrivenBehaviours are given a reference to their parent WeatherProperty or

ReliantWeatherProperty (both ScriptableObjects), from which they wish to be driven and

notify the parent at runtime that they wish to be updated. Although this extra step seems

somewhat convoluted it allows for WeatherProperty and WeatherProperties objects to be

treated as assets in the editor, which in turn allows developers to define the system

behaviour in the editor, rather than having to define behaviour in specialised scripts.

Further, developers can inherit from IntensityDrivenBehaviour to define their own custom

controllers for a new weather property just by adding that property to a weather event in

the editor or, alternatively, can define a new IntensityDrivenBehaviour of a existing

WeatherProperty by adding a reference to that weather element to their script.

In order to determine to what extent the system had met its objectives of

editor-friendliness, extensibility and queryability, a questionnaire was completed by final

year students and an average rating was calculated (Appendix F.1). Each section, scored 70%

in the ratings overall.

18

10. Stages
Each stage of the project was treated as a sprint in terms of the SCRUM management of the

project. Furthermore, each sprint was concluded with a “Sprint Assessment” in order to

better keep track of the completed objectives on a sprint-by-sprint basis, in addition to the

management through Axosoft (Appendix C.1.1 - C.1.11).

10.1. Sprint 1 - ending 06/02/18

During the first sprint of the project a requirements document was produced (Appendix D.1)

using the MoSCoW method. This summarised the project Epics that made up the minimum

viable product; customisable weather assets, believable weather, extensibility, queryable

weather and accessibility. It also clarified what the project would not deliver; photorealistic

assets and simulation-level realism. Once the core requirements of the project had been

documented, project management was initalised with a new Github Repository and Axosoft

instance.

A prototype of the weather system was also produced, which demonstrated particle effects

being driven by a procedural weather algorithm, in which the weather changed over time.

This included a simple particle management system for displaying the correct particle

system for each weather type. This prototype was driven by perlin noise (Scratchapixel, n.d.)

in the Unity Game Engine and two values were produced representing the humidity and

temperature for a given two-dimensional coordinate position in the game world. The two

coordinate values were used to calculate a weather type. For example, a high temperature

and high humidity might result in stormy weather whereas mid temperatures and mid

humidity might produce sleet.

Real weather data collected from passive logging over the last year was compiled into a

single document to be used as reference for realistic weather transitions (Table 2).

Table 2 - Sprint 1 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Initialise project
repo with Unity

project

2 0.5 Y

Setup Axosoft 2 1 Y

Produce
Requirements

Document

2 1.5 Y

Throwaway
prototype of

procedural weather

16 15 Y

19

Compile real
weather data in

single document for
later testing

2 2 Y

10.2. Sprint 2 - ending 14/02/18

A new repository was created with a custom gitignore, including a simple readme and

licence. This was to ensure that prototype code was not included in the final version.A UML

was constructed in Visual Studio from which all the base classes were generated. The classes

were then edited to correct any inheritance errors, eg WeatherSet and WeatherEvent were

changed to inherit from ScriptableObject.

Custom editors were produced for dynamically adding WeatherTypes enums. Similarly a

custom editor was made for WeatherManager which allows for dynamically switching

between procedural and manual modes in the editor. An editor for a DoubleDictionary data

structure was created which requires two keys, rather than the usual one to lookup a value.

This is the underlying data structure for ProceduralWeatherLookup. Further, a

ProceduralWeatherLookup editor was produced, however serialization issues at this stage

resulted in the underlying ScriptableObjects from storing the data.The scripts and assets

created at this time were organised in Unity to make management easier in the longer term.

A new namespace was introduced, ‘WeatherSystem.Internal’, for the inner workings of the

system as to not expose, unnecessarily, too much information to the end user.

The user tests and visual implementation research that were scheduled for this sprint were

delayed to the next sprint in order to focus on bug fixes (Table 3).

Table 3 - Sprint 2 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

New project
repository for actual

implementation

0.5 0.5 Y

Create base class
implementations

based on prototype

8 4 Y

Refresh editor code
knowledge through
implementation of

first editors

32 28 Y

Create object for
lookup using two

values -

8 4 Y

20

“DoubleDictionary”

Design user tests 8 0 N

Research common
implementations of
weather effects (eg
shaders vs particle

effects etc)

8 0 N

10.3. Sprint 3 - ending 22/02/18

The serialization issues experienced in the custom ProceduralWeatherLookup editor were

fixed in this stage. Similarly, bugs in the WeatherTypes editor were fixed. Firstly, a null

reference would be caused when editor code was re-compiled and secondly no edits would

be possible until the array was resized. Both bugs were solved.

Noise generation functions were implemented based on the work conducted for the

prototype, including seeding to allow for repeatable procedural weather. Further, basic

noise-based wind represented by a Vector2 object was implemented and used to drive the

sample location of the weather perlin noise map. This created a more believable changeable

weather system for testing. Further, extra scripts were produced to visualise the noise

generation and enable faster testing and iterations. Finally, preliminary user test designs

and weather system visualisation research were produced. (Table 4).

Table 4 - Sprint 3 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Design user tests 8 1 Y

Research common
implementations of
weather effects (eg
shaders vs particle

effects etc)

8 4 Y

Fix serialization
issues in

WeatherLookup
editor

8 8 Y

Implement
procedural noise
generation with
seeded values

16 16 Y

Develop tools to 8 8 Y

21

test/visualise
procedural noise

10.4. Sprint 4 - ending 01/03/18

In this stage, research was conducted into Unity’s AnimationCurve system and, using

information gathered from the research, intensity transitions had curves added for the

modification of intensity values during weather changes. As part of testing the new curves

system, new weather events were added and updated. Also, weather transitions were fixed,

stopping an issue where weather would constantly loop between two weather types. In

addition, a preliminary implementation of WeatherManager weather queries was added to

allow external objects to get weather at their positions from which a new weather

visualisation was created in the form of ‘Weather Stations’. These display the type of

weather at their position and update periodically. Further to this, an accompanying

distributor, which spawns a number of stations was created. (Table 5).

Table 5 - Sprint 4 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Research Unity
curve system

4 4 Y

Implement
WeatherEvent

hierarchy

32 32 Y

Implement Weather
transitions with
lerping intensity

4 4 Y

Develop “weather
stations” to display
weather at various

location

2 1.5 Y

10.5. Sprint 5 - ending 08/03/18

A major refactor occured in this stage. This introduced weather properties and reliant

weather properties. This allows for properties to be independently applied to each

WeatherEvent, and for a hierarchical structure of WeatherEvents. Due to the new structure,

a new WeatherEvent editor for adding curves through to WeatherProperties objects at

22

runtime was implemented. Further to this, WeatherProperty was overhauled to use

MonoBehaviours inheriting from IntensityDrivenBehaviour which are found at runtime and

makes the system much more flexible.

In preparation for adding visual elements, a first person controller and volumetric lighting

package were imported. Alongside this Terrain was added from a previous project as a

placeholder. Also, the first visualisation was created in this stage: a rain particle effect.

The WeatherStation introduced in the prior stage was extended to distribute weather

stations on the terrain (Table 6).

Table 6 - Sprint 5 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Implement weather
properties as a child
in the Weatherevent

hierarchy that are
also driven by

intensity values

8 15 Y

Test potential demo
controllers and

scenery

4 8 Y

Create a particle
effect to be later

driven by a weather
property

4 3.5 Y

Add WeatherEvent
editor for curve
application via

weather properties

4 2 Y

10.6. Sprint 6 - ending 15/03/18

In this stage a focus was placed on the ‘Manual’ weather mode in which WeatherEvents are

queued to occur. Substantial progress was made in this regard.

New IntensityDrivenComponents were added to the project for controlling materials,

particle effects and audio. Thought was also given to how to get temperature and humidity

values from a WeatherEvent at a particular position in the ‘Manual’ weather mode (Table 7).

Table 7 - Sprint 6 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Manual weather 16 25 N

23

mode
implementation

Add
IntensityDrivenCom
ponents for particle
effects, shaders and

audio

8 7.5 N

Add shaders,
particle effects and

audio to be driven by
new components

8 8 N

Reverse lookup of
weather and

humidity values at a
given point

16 2 N

10.7. Sprint 7 - ending 22/03/18

Stage seven focused on the project report write up. This included the writing up of stages

one to six. Alongside this, research was conducted to for the legal, social and ethical section

of the report.

Investigation into how to implement the temperature and humidity reverse lookup in the

DoubleDictionary data structure. This will be used for WeatherEvents in the ‘Manual’

weather mode. Considerations were made to performance, due to the fact that, internally,

DoubleDictionary is a dictionary of dictionaries meaning the time complexity of access via

the stored inner value is O(n). However, due to the small number of elements held in the

DoubleDictionary this was deemed an acceptable value (Table 8).

Table 8 - Sprint 7 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Manual weather
mode

implementation

5 2 Y

Add
IntensityDrivenCom
ponents for particle
effects, shaders and

audio

2 1 Y

Add shaders,
particle effects and

audio to be driven by

2 1.5 Y

24

new components

Reverse lookup of
weather and

humidity values at a
given point

14 2 N

Stages write up for
final report

4 3 N

Legal section
research for final

report

2 1 Y

10.8. Sprint 8 - ending 29/03/18

This stage focused on visual changes, a fix for weather transitions suddenly snapping to new

values and editor refactors. Firstly, a new terrain was created for testing and as a potential

platform for the final project demonstration. Alongside this, trees were generated for later

testing of integration with Unity’s “WindZone” component.

Secondly, a fix was implemented to stop weather events snapping to new intensities

suddenly during transitions, causing highly unrealistic jumps in weather. The fix involved

implementing a time-tracking class that acted as a wrapper to Unity’s static “Time” class;

“TimeExtension”. TimeExtension provided a way to only update the time since the level was

loaded in frames where a check was made against the time. For example, a frame in which

no time check was made would result in the time between that and the previous frame

being discarded from the total tracked time since the level loaded. This was ultimately

unsuccessful in fixing the snapping issue, but did highlight a bug which caused the

WeatherStations’ queries for weather information at their locations to be artificially inflated

the cumulative tracked value of the wind. This bug was resolved and the wind strength was

increased as a result, to offset the fact that it was no longer being increased 50 times per

frame rather than the desired single increase.

Finally, a refactor of the WeatherEvent and WeatherManager editors was undertaken in

order to consolidate shared functionality, in the form of generic field-drawing methods, into

a common “WeatherEditor” parent class (Table 9).

Table 9 - Sprint 8 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Reverse lookup of
weather and

humidity values at a
given point

14 8 Y

25

Stages write up for
final report

1 1 Y

Tree generation 4 6 Y

Time Extension 4 3 Y

Consolidate editor
functionality to

parent class

2 3 Y

10.9. Sprint 9 - ending 12/04/18

Stage 9 added callback delegates to weather transitions. This allows any script to attach a

method to be called when the transition begins, at each transition step and upon

completion of the transition. Each delegate is called with a “WeatherChangeEventArgs”

object as a parameter, exposing the weather events (and therefore underlying values such

as intensity) involved in the transition.

Most instrumentally, a major refactor was made to the intensity call hierarchy. The old

method of passing a single float was replaced with an “IntensityData” object. Alongside the

old value, the current temperature and humidity value enums were also included. This

allows for visual component controllers to conditionally activate on temperature and

humidity values.

Additionally, visual snow elements were produced. This included a simple snow particle

effect for snow fall and a shader for snow buildup over time. An IntensityDrivenComponent

derived parent class was also produced, “TempHumidityIntensityDrivenComponent”, using

the new data provided by the intensity hierarchy to allow rain and snow to determine when

to activate (Table 10).

Table 10 - Sprint 9 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Weather transition
callback delegates

4 4 Y

More data passed
through intensity

hierarchy

16 14.5 Y

Snow particle
system

4 1.5 Y

Snow shader 8 7.5 Y

Conditional intensity
driven behaviours

4 3.5 ~Y

26

using new hierarchy
structure

10.10. Sprint 10 - ending 03/05/18

The most dramatic change in this stage was the resolution of the snapping-weather bug.

This was done by altering the way in which IntensityDrivenComponents, and derived

controllers, were disabled. Rather than an instantaneous on-to-off-style disable, a coroutine

was added to gradually disable weather effects. This means that weather effects shared by

multiple weather types, for example cloud visualisations and their associated controller

being used in rain and overcast weathers, when disabled as part of the transitioning

process, will only change by a negligible amount prior to having the disable coroutine

cancelled when its enabled in the next frame. The transitions were also improved by flipping

the order in which the transitioning weather events are updated halfway through the

transition in order to further reduce any snapping. Finally, curve values were updated to get

more realistic weather patterns for each weather event (Table 11).

Table 11 - Sprint 10 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Fix snapping
weather bug

8 32 Y

Update hierarchy
curves

4 3.5 Y

Conditional intensity
driven behaviours

disable behaviour fix

4 4 Y

10.11. Sprint 11 - ending 17/05/18

This was the final sprint and as a result included many minor fixes and changes in

preparation for the conclusion of the project. This included a fix for volumetric lights for

changing suddenly even after a gradual change towards the values. Similarly, some

behaviours were snapping to values too quickly and so changes were implemented to make

transitioning to new values more gradual.

A couple of final features were also added. For example, a wind controller behaviour that

tied into Unity’s WindZone system was added, which allowed particle effects and trees to be

affected by the generated wind. As part of this addition, extra query methods were added

to the weather manager in order to access required data, such as the cumulative wind and

the wind at the present moment. The final feature to be added was the ability to explicitly

set the generation seed through the weather manager.

27

Finally, the demo was created to show of the complete weather system, using an example

scene by Unity, “The Viking Village”. The WeatherSystem package was imported and the

example prefabs used to set up the system in the scene, including an onscreen display of the

weather data at the current position. Testing was performed on OSX to confirm the build

ran successfully on both operating systems as per the requirement presented in the project

initiation document. (Table 12).

Table 12 - Sprint 11 work summary

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Instance events
implementation -

use noise generator
to ensure

deterministic

4 3 Y

Further refinement
of snapping issue

8 9 Y

Volumetric lighting
snapping fix

8 6 Y

Visual and audio for
all weather events

16 14 Y

Integration with
Unity WindZones

8 7 Y

Queryability of wind
and intensity values

2 1 Y

Weather info UI
display

2 1 Y

Seed setting
through weather

manager

2 0.5 Y

Update
documentation

4 2 Y

28

11. End-Project Report
The only concrete method in which to determine if a project has been a success is to

scrutinise the extent to which it has met its objectives. As such, a critical evaluation of the

resultant product is presented here. Two sources of data have been used in the evaluation;

a questionnaire completed by final stage students (Appendix D.1) and a comparison of

generated weather and real world weather data (Appendix E.1, E.2).

11.1. Be free, open-source and reusable without limitation

The project delivered and surpassed on this objective. The project is available under the MIT

licence on Github whilst also providing documentation and example scenes and

implementations. Furthermore, the project will be submitted to the Unity Asset Store on

completion of the project, increasing the exposure of the package and further increasing the

ease with which developers can integrate the package with their games.

11.2. Be procedural

Procedural generation is the quasi-random algorithmic

generation of some content. In this instance, that

content is the temperature, humidity, wind, and

weather intensity and the generation comes from

two-dimensional perlin noise, which results in gradual

output changes as the input gradually changes (Figure

3). Because perlin noise is deterministic, the same

outputs are given for the same inputs. This means that

by offsetting the positional data given to the noise

generation function by some fixed “seed”, new data

can be generated

to allow for

original content,

or the seed can be

fixed to have a repeatable experience (Figure 4). As

such, the produced weather system delivers on this

objective as a whole. However, the degree to which it

meets each sub-objective is variable. The goal to

“provide a platform from which weather patterns can

be new and interesting on each playthrough of any

game using the system” is fully realised, with seed

values which can be modified programmatically or in

the editor, that result in new weather patterns. This

29

obviously also fulfills the requirement that the system allow for seeded generation and

therefore is able to produce reproducible weather patterns at the discretion of the

developer. Furthermore, the generated patterns can also be modified by the developer

through changes to in the editor; varying the temperature and humidity values which result

in a certain weather type, increasing changeability by increasing the wind strength, or

changing the size of areas of weather through changing world size and scale values.

The third procedural objective is where there is an argument the system falls short.

Although weather varies gradually across the game world at any given moment in

procedural mode, the added “Manual” weather mode, in which weather events are

predetermined by the developer, results in a constant weather, with fixed temperature and

humidity values across the game world. Equally, it could be argued that the system delivers

on this goal in addition to providing the added feature of developer-curated content.

Related to the procedural generation is the believability of the produced system, which was

highlighted as an important factor in the project initiation document. As such, testing has

been performed to evaluate how similar the procedurally generated data is to that

experienced by the author between January 31st 2017 and April 22nd 2018. This data was

collected using the “If this then that”, IFTTT, platform which allows a trigger, in this case the

weather changing at a phone’s position, to run a task, in this case saving the weather data to

a spreadsheet. A script was written to log similar data to that of the IFTTT applet for the

procedural weather system with the changeability of the system at three different settings.

The grouping of the data is shown to be reasonably similar across all weather types included

30

in the procedural system, with the exception of hail, which was noticeably more prevalent in

the procedural data (Figure 5). This may be due to the number of weather events included

in the procedural generation. Increasing this value may result in greater similarity to the real

world data. More importantly, in the questionnaire completed by final year students, the

generated weather was considered to be 66% believable on average. This shows that even

with sizable difference in the actual occurrence of weather events, the perceived difference

is relatively small.

11.3. Be extensible

The extensibility of the system was an important consideration in its design due to the

open-source nature of the project. Due to the fact that system has been designed with a

hierarchical nature, and in an OO compliant manner, extensibility is inherent to the design.

In fact, the example IntensityDrivenBehaviour extensions are implemented in the same way

in which other developers could implement their own controllers. Questionnaire responses

showed developers felt that the system was 70% extensible.

The software is also extensively documented so as to be easy to use for other developers,

and therefore delivers on that objective. This is reflected in the questionnaire responses

which rated the documentation at 68%. Furthermore, based on feedback on the

documentation, further updates have been implemented resulting in more information on

the structure of the scriptable object hierarchy and the functionality of manual mode

alongside a User Guide (Appendix A).

11.4. Be queryable

In procedural weather mode, all values are fully queryable for any given position through

the WeatherManager; raw temperature and humidity values and their equivalent enum

values, weather type, intensity and wind values. The system, therefore, delivers on the

requirement to allow for querying at arbitrary positions. This is highlighted by the feedback

received from the questionnaire in which developers rated the queryability of the system at

70% on average.

Furthermore, callback methods are provided by the WeatherManager in the form of

delegates for weather transitioning information. Separate callbacks are triggered at the start

of a transition, at each transition “tick” and upon completion of the transition. These

provide the weather events which are being transitioned between and therefore exposes

the current temperature, humidity and intensity values.

11.5. Be Unity Editor friendly

The weather system provides several custom editors for improved usability. Primarily the

WeatherManager component only displays properties that are pertinent to the current

mode of the weather system. For example, the weather lookup object is displayed in both

31

modes whereas the weather event sequence list is only displayed in manual mode. This

means that alongside being editor-friendly, the system also allows for changes to

initialization values without editing code and displays properties in an suitable manner in

the Editor. An editor was additionally provided for adding new weather events which allows

developers a fast initial setup, again without having to edit any code. This resulted in

questionnaire respondents rating the editor-friendliness of the system at 70%.

11.6. Further features

During development, the scope of the project extended, adding new components and

functionality.

11.6.1. Manual mode

The most dramatic addition to the system was included in the scope of the project within

the second stage when it became apparent that the procedural element could easily be

delivered within the project timescale. This mode added functionality to be able to set up

sequences of weather events with associated data such as the length of time and intensity

of each weather event. This additional feature allows developers to provide curated

weather environments for key plot points or scripted scenes. It also allows games to show

off their environments in a variety of weather backdrops for game trailers or in

demonstrations.

32

11.7. Product Comparison

The final analysis on the success of the project is a comparison with the packages identified

and the project’s initiation (Table 13). The resultant package matches, and in some cases

surpasses the functionality of even the most expensive of identified packages and as such

must be viewed as a success.

12. Project Post-Mortem

12.1. Objective Delivery

The drive for this project was the lack of availability to fully featured, open-source weather

systems, specifically for hobby and independent developers. The objectives, therefore,

provided a platform from which the resolution of this goal could be met. As such, the

project was successful in both its delivery of the final product and the solution to the core

issue.

12.2. Technology

The selection of technology for this project has been shown to be advantageous. The choice

of Unity and C# was well founded for delivery of the project to the identified market, and

productivity of development time. Further, Unity’s integration with C#, and therefore

compatibility with Visual Studio, has also allowed for productive development and fast

implementation due to the prior fluency in the language and platform. Similarly, prior

experience with the Axosoft platform has enabled powerful project management within an

agile SCRUM framework.

The selection of Github as the source control platform has not only provided a robust

solution for code management but also has increased the author’s exposure to the

industry-standard git platform.

12.3. Project Management and Methodology

The selection of SCRUM over Cowboy has proven to be the right decision. This is not only

due to the availability of existing tools, such as Axosoft, for SCRUM support but also due to

the stricter rule-set the SCRUM methodology provided over Cowboy, in turn allowing for a

more productive, iterative development process.

The application of project management techniques largely conformed to SCRUM

methodology in that work was segmented into sprints with backlog items being assigned for

development in each iteration, with consideration given to the time required versus the

33

available time. However, the concept of “daily scrums” were not followed due to the fact

that development was completed by a single developer. Therefore, the work remaining for

the sprint was reviewed whenever a development session was started, to gauge progress

towards the sprint goals, following a similar mentality to that of daily scrums. Similarly, the

sprint review and retrospect element was fulfilled by the highlight meetings and reports

alongside the Sprint Assessment documents.

Although no formal branching strategy was employed in the source repository, the project

did not suffer for it. This is primarily due to the fact that the project was conducted by only a

single developer. Had there been other developers, a feature-based branching strategy

would certainly have benefitted the project. Arguably, feature branches could have

improved productivity by allowing work on multiple different features simultaneously. With

that said, had the lack of branching become a problem in this project then a strategy would

have been implemented.

12.4. Developer Performance and Lessons Learned

Overall, performance over the course of the project has been considerable. Intermediary

deliverables were delivered in a timely manner and to a high standard. Similarly, the

produced code is of a high quality, conforming to accepted coding standards and

object-oriented principles whilst integrating well with Unity’s component based system.

Furthermore, the design of the system has enabled the delivery of the queryability and

extensibility objectives.

The fact that the target deliverables were surpassed and additional functionality was

included in the project highlights that the performance throughout the project was

significant.

The design elements of the project could have been improved, however. Although designs

for the system as a whole and its subsystems were developed, the process was often

relatively informal, with use of a whiteboard. Furthermore, a more rigorous,

all-encompassing process could have been employed in order to better predict the

requirements of the system once the core objectives had been met. This may have allowed

for a more flexible implementation and therefore eased the addition of additional features.

Similarly, examining implementations of available packages may have been beneficial to

developing the system structure. Additionally, although the project supervisor in some

regards acted as a client, it may have been advantageous to identify a formal client figure,

who also had good knowledge of the problem area in order to better prioritise features and

allocate development time, as per their needs. This may also have provided a more effective

process by which to critically evaluate the resultant implementation.

34

13. Conclusions
The project delivered on and surpassed its objectives. The resultant product offers a

powerful alternative platform for developers to implement weather into their projects

without monetary cost, allowing for greater immersion and realism in more games. The

release of the project under a permissive, open-source licence allows developers both the

freedom to use the software as they see fit, and presents an opportunity for the project to

be further enhanced with further features and bug fixes by other developers.

The success of the project is due to the clear objectives defined at the project’s inception,

and the effective identification and execution of both project management methodology

and choices of software. However, development could have been improved through the

implementation of a more formal client and better defined features in excess of the

minimum viable product.

Finally, the benefits of the project as an experience is not to be dismissed. The development

of the project has offered the opportunity to better understand the management of a larger

software package and the development of a software solution in a formal setting, as a

solo-developer.

35

14. References
Barton, M. (2008). How’s the Weather: Simulating Weather in Virtual Environments. The

international journal of computer game research, [online] 9(1). Available at:

http://gamestudies.org/0801/articles/barton [Accessed 12 May 2018].

Bay 12 Games. (n.d.). Bay 12 Games: Dwarf Fortress. [online] Available at:

http://www.bay12games.com/dwarves/features.html [Accessed 12 May 2018].

Bcs.org. (n.d.). Code of conduct. [online] Available at: https://www.bcs.org/category/6030

[Accessed 12 May 2018].

Bertz, M. (2018). Frostpunk Review – A Frigid, Unrelenting Survival Success. [online] Game

Informer. Available at:

http://www.gameinformer.com/games/frostpunk/b/pc/archive/2018/04/23/frostpunk-revi

ew-a-frigid-unrelenting-survival-success.aspx [Accessed 12 May 2018].

Bronte, C. and Davies, S. (2006). Jane Eyre. 3rd ed. Suffolk: Penguin Classics, p.xi-296.

Cheng, C. (2012). Story Points Versus Task Hours. [online] Scrumalliance.org. Available at:

https://www.scrumalliance.org/community/articles/2012/august/story-points-versus-task-h

ours [Accessed 12 May 2018].

Cunningham, M. (1979). Weather, mood, and helping behavior: Quasi experiments with the

sunshine samaritan. Journal of Personality and Social Psychology, 37(11), pp.1947-1956.

Docs.unity3d.com. (2018). Unity - Manual: Execution Order of Event Functions. [online]
Available at: https://docs.unity3d.com/Manual/ExecutionOrder.html [Accessed 20 May 2018].
Epublications.marquette.edu. (2018). Glossary of the Gothic: Weather | Glossary of the

Gothic | Marquette University. [online] Available at:

https://epublications.marquette.edu/gothic_weather/ [Accessed 12 May 2018].

Frushtick, R. (2018). Sea of Thieves review. [online] Polygon. Available at:

https://www.polygon.com/2018/3/22/17151248/sea-of-thieves-review-xbox-one-pc

[Accessed 12 May 2018].

Gotterbarn, D. (n.d.). [online] Cscietsu.edu. Available at:

http://csciwww.etsu.edu/gotterbarn/artge2.htm [Accessed 12 May 2018].

Gousios, G., Vasilescu, B., Serebrenik, A. and Zaidman, A. (2014). Lean GHTorrent: GitHub

Data on Demand. In: MSR 2014 Proceedings of the 11th Working Conference on Mining

Software Repositories. [online] New York: ACM. Available at:

https://dl.acm.org/citation.cfm?id=2597126 [Accessed 12 May 2018].

Hirshleifer, D. and Shumway, T. (2001). Good Day Sunshine: Stock Returns and the Weather.

SSRN Electronic Journal .

36

Hudson, L. (2018). No Man’s Sky Is Like Real Space Exploration: Boring, Except When It’s

Sublime. [online] Slate Magazine. Available at:

http://www.slate.com/articles/technology/future_tense/2016/08/no_man_s_sky_offers_18

_quintillion_planets_for_players_to_explore.html [Accessed 12 May 2018].

Kengaskhan (2018). How Will Fog on PUBG's Map Affect Your Gameplay?. [online]

Gameskinny.com. Available at:

https://www.gameskinny.com/pwj6q/how-will-fog-on-pubgs-map-affect-your-gameplay

[Accessed 12 May 2018].

Let the Right One In. (2008). [DVD] Directed by T. Alfredson. Sweden: EFTI.

Markowitz, M. (1999). Spacewar. [online] Games of Fame (Archive). Available at:

https://web.archive.org/web/20060426231325/http://www3.sympatico.ca/maury/games/s

pace/spacewar.html [Accessed 12 May 2018].

Minecraft Wiki. (n.d.). The Overworld. [online] Available at:

https://minecraft.gamepedia.com/The_Overworld#Limitations [Accessed 12 May 2018].

Murray, J. (1997). Hamlet on the holodeck. Cambridge, Mass.: MIT Press.

Nicholls, M. (2013). A Cold Day In Hell: Gothic Horror in Let The Right One In. The Missing

Slate . [online] Available at:

http://themissingslate.com/2013/04/15/a-cold-day-in-hell-gothic-weather-in-let-the-right-o

ne-in/ [Accessed 12 May 2018].

Opensource.org. (n.d.). The MIT License | Open Source Initiative. [online] Available at:

https://opensource.org/licenses/MIT [Accessed 12 May 2018].

PLAYERUNKNOWN'S BATTLEGROUNDS Forums. (2018). Weather removed?. [online]

Available at: https://forums.playbattlegrounds.com/topic/163622-weather-removed/

[Accessed 20 May 2018].

Porreca, R. (2017). It's hard as hell to see during PUBG's foggy weather. [online] Destructoid.

Available at:

https://www.destructoid.com/it-s-hard-as-hell-to-see-during-pubg-s-foggy-weather-461377

.phtml [Accessed 12 May 2018].

Rare (2017). Sea of Thieves Inn-side Story #16: Storms. [video] Available at:

https://www.youtube.com/watch?v=v7DgXtX2rXk [Accessed 12 May 2018].

Roberts, S. and Patterson, D. (2017). Virtual weather systems: measuring impact within

videogame environments. In: Australasian Computer Science Week Multiconference. [online]

Geelong. Available at: https://dl.acm.org/citation.cfm?id=3014878 [Accessed 12 May 2018].

Schindler, E. (2007). Enterprise Developers Programming Speed? Check. Time to Fix Bugs?

Not So Fast. | CIO - Blogs and Discussion. [online] Advice.cio.com (Archive). Available at:

https://web.archive.org/web/20100109123853/http://advice.cio.com/esther_schindler/ent

37

erprise_developers_programming_speed_check_time_to_fix_bugs_not_so_much [Accessed

12 May 2018].

Schulz, K. (2015). Writers in the Storm. The New Yorker. [online] Available at:

https://www.newyorker.com/magazine/2015/11/23/writers-in-the-storm [Accessed 12 May

2018].

Scratchapixel. (n.d.). Perlin Noise: Part 2. [online] Available at:

http://www.scratchapixel.com/lessons/procedural-generation-virtual-worlds%20/perlin-noi

se-part-2/perlin-noise [Accessed 12 May 2018].

Steve Russell (1962), Spacewar! [Video game]. Steve Russell

The Dwarf Fortress Wiki. (n.d.). DF2014:Weather - Dwarf Fortress Wiki. [online] Available at:

http://dwarffortresswiki.org/index.php/DF2014:Weather [Accessed 12 May 2018].

The Lord of the Rings: The Two Towers. (2002). [DVD] Directed by P. Jackson. New Zealand

and United States.

Thomas, A. (2007). NCAA Football 08 Review. [online] GameSpot. Available at:

https://www.gamespot.com/reviews/ncaa-football-08-review/1900-6175449/ [Accessed 12

May 2018].

38

15. Appendices

Appendix A - User Guide
Can be found online in PDF and Markdown formats.

39

https://firebasestorage.googleapis.com/v0/b/peloozoid-cf102.appspot.com/o/f2UmiwqLv4cNdGnxwUQYUx2jeX92%2FWeatherSystem_User_Guide.md.pdf?alt=media&token=b5701a71-878c-46da-b4e7-bd4ddccbb722
https://github.com/Slord6/WeatherSystem/blob/master/UserGuide.md

Appendix B - Project Management Artefacts

B.1 - Project Initiation Documents

B.1.1 - Project Proposal

PRCO304 - Project Proposal
Samuel Lord, Computing and Games Development - 10485852

samuel.lord@students.plymouth.ac.uk

Keywords

Weather simulation, parallel programming, game developer tool, C++ Lib, Unity asset

A (semi) realistic weather system API for game developers utilising parallelised GPU code
written for CUDA (i.e. NVIDIA cards), with a view to compiling through HIP or a similar tool to
allow for use on other (OpenCL compatible) systems. The system will be inspired by
forecasting and simulation techniques and reduced/simplified in order to run on consumer
hardware in games.
The culmination of the project will be demonstrated through Unity game engine as an
example front end for the system.
The project will build on principles from SOFT354 Parallel Computation and Distributed
Systems through the addition of further weather phenomena, interaction and more realistic
simulation.

The employed methodology will be agile, sprint-based, scrum-like method called Cowboy (1)

Development will be C/C++ for the core system with any front end code for Unity in C#, both
developed in Visual Studio

Required learning is majoritively in meteorological systems. Introductory books on the topic
are available in the library to support online materials.

1. Cowboy development methodology
(https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&am
p=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253
Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253
Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D151
2661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=

40

mailto:samuel.lord@students.plymouth.ac.uk
https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22
https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22
https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22
https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22
https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22

%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D
1740%26context%3Detd%22)

Learning Required

Current weather forecasting/simulation techniques including fluid dynamics and
thermodynamics.
Meteorological/atmospheric models.
https://www.theguardian.com/science/alexs-adventures-in-numberland/2015/jan/08/banking-
forecasts-maths-weather-prediction-stochastic-processes
http://maths.ucd.ie/~plynch/LECTURE-NOTES/DYNAMIC-Met-2004/

41

https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22
https://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=1740&=&context=etd&=&sei-redir=1&referer=https%253A%252F%252Fwww.google.com%252Furl%253Fq%253Dhttps%253A%252F%252Fscholarscompass.vcu.edu%252Fcgi%252Fviewcontent.cgi%253Farticle%25253D1740%252526context%25253Detd%2526sa%253DD%2526ust%253D1512661428337000%2526usg%253DAFQjCNFWBjETpZQt4AaamKENk4yWB700aA#search=%22https%3A%2F%2Fscholarscompass.vcu.edu%2Fcgi%2Fviewcontent.cgi%3Farticle%3D1740%26context%3Detd%22
https://www.theguardian.com/science/alexs-adventures-in-numberland/2015/jan/08/banking-forecasts-maths-weather-prediction-stochastic-processes
https://www.theguardian.com/science/alexs-adventures-in-numberland/2015/jan/08/banking-forecasts-maths-weather-prediction-stochastic-processes
http://maths.ucd.ie/~plynch/LECTURE-NOTES/DYNAMIC-Met-2004/

B.1.2 - Project Initiation Document

PRCO304 Project Initiation Document

Samuel Lord 10485852

Introduction

Many games require the use of weather for immersive environments and atmosphere. The weather

solutions available vary in quality, scope and their focus on visuals or simulation.

However the availability of free, open-source, extensible and consistently repeatable weather

package for developers to use are near non-existent. As such, this project looks to address these

shortcomings by providing a procedural weather platform to which developers can add their own

assets to create immersive experiences.

Product Case

Product Need

There are many options available to developers looking to integrate weather into their games.

Packages vary from purely visual to more mechanistic packages which contain little to no visuals.

They also vary broadly in quality and scope and those with worthwhile depth often, understandably,

have a notable price attached. An open-source alternative, which could later become a

community-driven project, would have applications for ‘indie’ developers, and in educational

settings.

In order to inform the specification of the product, research has been conducted to identify the

functionality offered by similar products, and is shown in the table below (Assetstore.unity.com,

2018).

Product
Name

Price Types of
Weather

Extensible Terrain
Interaction

Audio
support

Example
code/

scenes/
assets

Editor-
friendly

Queryable

Weather
Maker

$42 Fog, rain,
snow, hail and
sleet

Yes Colliders
and
shaders

Yes Yes Yes No

Enviro $50 Clear Sky,
cloudy, raining,
stormy, snowy
and foggy

Yes Water only Yes No Yes No

UniStorm
2.4

$60 Sunny, Mostly
Clear, Partly
Cloudy, Mostly

Yes Shaders
only

Yes Yes Yes Yes

42

Cloudy, Foggy,
Snow, Rain,
Lighting and
Thunderstorms

Time of
Day &
Weather
System

Free Sun, cloudy,
rain
thunderstorm
and snow

Yes No No Yes Largely No

The identified products and key areas each package covers has informed the project objectives and

the initial scope.

Project Objectives

The presented weather platform aims to meet five key objectives:

1. Be free, open-source and reusable without limitation

2. Be procedural

a. Will provide a platform from which weather patterns can be new and interesting on

each playthrough of any game using the system.

b. Will be seeded and therefore will generate reproducible weather patterns at the

discretion of the developer, and enable easier testing.

c. Weather will vary across the game world at any given moment, adding more realism.

This is in contrast to the researched products which unanimously had ubiquitous

weather throughout the game world.

3. Be extensible

a. Will be designed so as to be extensible by developers using the platform.

b. Will be well documented so as to be easy to use for other developers.

4. Be queryable

a. Will allow developers to request information about the weather at specific locations

and times. This allow for games which use information such as temperature to, for

example, change the look of the player or environment in different conditions or

provide information to survival-like games.

5. Be Unity Editor friendly

a. Changes to initialization values will not require editing code and will be available as

sliders/editable text boxes in the Editor.

b. As and when required, custom editors may be written to automate repetitive tasks.

Initial Scope

1. The following weather processes will be included in the platform: Clear sky, rain, storms,

snow, overcast and integration with Unity’s wind zones. The weather system will be

produced in C# as a package for Unity Game Engine. The weather system will control particle

and audio effects alongside simple shaders and lighting.

43

2. The product will not be a simulation, however it will take inspiration from weather

simulation and historical data. For example, historical weather data may be analysed to

determine the chance of one type of weather leading to another and this may inform the

balancing of the system. This will enable an immersive experience to players through

realistic transitions between weather states.

3. The product will be cross platform (Windows/OSX) compatible, both for

editing/development and gameplay.

4. An example demo implementation utilising the package will be produced in Unity Game

Engine (Unity, 2018) for Windows. The demo will allow a first person perspective view of a

game world that has the produced weather package integrated, showing weather

information at the players current position on screen whilst visual weather effects can also

be seen.

Method of Approach

The project will utilise a SCRUM agile methodology for software development, with sprints lasting

one week to match the project highlight report requirements. The meetings as defined in SCRUM

will be slightly modified to better fit the project requirements and as such, meetings with the Project

Supervisor Marius Varga, will act as an end-of-sprint meeting equivalent.

The utilised technologies will be C# and Unity Game Engine for software development. Simple game

assets, for example, textures will be produced for the demo and these will be created using

Photoshop and GIMP.

Initial Project Plan

Initial Project Plan Deadlines

Stage Start Date End Date Outcomes

1. Initiation 16 Jan 26 Jan This document

2. Detailed
requirements

Mon 29 Jan Mon 5 Feb Requirements
document, Initial
backlog creation,
Licence creation

3. System Design Mon 5 Feb Mon 12 Feb High level UML,
Library structure,
Development
environment ready,
user tests designed

4. Increment 1 Mon 12 Feb Mon 26 Feb Package V1 and first
testing session

5. Increment 2 Mon 26 Feb Mon 5 March Review testing results

44

and integrate
feedback, produce
package V2. Second
testing session.

6. Increment 3 Mon 5 March Fri 19 March Integrate changes
based on feedback.
Demo ‘front-end’ V1.
Third testing session.

7. Increment 4 Mon 19 March Mon 26 March Integrate changes
from third testing
session. Demo
‘front-end’ V2

8. Complete System Mon 26 March Fri 30 March Integrate any further
changes. Produce
Weather Package V1

9. Testing and
repackage

Mon 16 April Mon 23 April Bug fixes, rebuilt
package, code
documentation
finalised, library made
public on github

10. Assemble +
complete final report

Mon 23 April Fri 4 May Final Report

Control Plan

Code increments will utilise agile sprints, on a weekly basis. Highlight reports will be conducted in

line with sprints, or weekly when no sprints are active. Further, stage reports will be generated at

the end of each stage.

Communication Plan

Review meetings with the project supervisor will initially occur weekly and the frequency of these

meetings will be reviewed once stage 4 begins.

Initial Risk List

Project Risks and Mitigations

Schedule Overrun The easter break has been discounted from the
initial project plan and may be used as
contingency should it be needed. In the event
that the project is behind schedule more than 1

45

week, a meeting with the project supervisor
will be arranged and an exception plan
developed.

Illness The project supervisor will be notified in the
event of illness. Other mitigation as above.

Lack of knowledge to implement required
features

Meteorological knowledge: The library has an
extensive collection of works on meteorology,
alongside other works available online.
Software knowledge: Project supervisor and
other staff members for support and extensive
work online for reference.

Technology failure Written reports will be stored in google drive
and copied to SPMS for submission.
Code will be kept in a GIT repo hosted on
github.com, with copies kept on University and
personal computers as required.

Testing In the case of a lack of testers at the end of
each code sprint, the project supervisor will act
as a tester. Further tests will be performed as
soon as possible

Quality Plan

Requirements As defined in the project objectives and initial
scope. Further depth will be added in stage 2. It
will be ensured that they are relevant, correct
and complete.
Throwaway prototyping will be used for
implementing subsystems.

Design Validation The design will be checked against the
requirements document produced in stage 2.
The design must comply with code structure
standards which will largely follow Microsoft’s
Coding Techniques and Programming Practices
(Msdn.microsoft.com, 2018).

Sprint Review Each sprint will end with a review in which the
backlog is re-prioritised and work completed
that sprint is confirmed to have fulfilled the
requirements necessary.

Publication The publication of the package will occur in
stage 9, after the extensive testing of stage 8.

46

Documentation will have been completed
iteratively during development.

Legal, Ethical and Social Issues

This project does not require research on human subjects.

The code produced in this project will be released open source. As such, the licence for the released

code needs to be considered to enable developers to be able to use the resulting library. The licence

will be written in stage 2.

The licences for Unity also needs to be considered. Unity’s licence states that content created with

the engine belongs to the creator.

During the development of the weather package testing may take place, using other students or

university staff. This testing is covered by the approved PRCO304 usability study application.

References
Axosoft.com. (2018). Agile Project Management | Axosoft. [online] Available at:

https://www.axosoft.com [Accessed 11 Jan. 2018].

Assetstore.unity.com. (2018). Enviro - Unity Asset Store. [online] Available at:

https://assetstore.unity.com/packages/tools/particles-effects/enviro-sky-and-weather-33963

[Accessed 29 Jan. 2018].

Assetstore.unity.com. (2018). Time of Day & Weather System - Unity Asset Store. [online] Available

at:

https://assetstore.unity.com/packages/tools/particles-effects/time-of-day-weather-system-40374

[Accessed 29 Jan. 2018].

Assetstore.unity.com. (2018). UniStorm - Unity Asset Store. [online] Available at:

https://assetstore.unity.com/packages/tools/particles-effects/unistorm-2714 [Accessed 29 Jan.

2018].

Assetstore.unity.com. (2018). Weather Maker - Sky, Weather, Fog, Volumetric Light and Dynamic

Environment (2D & 3D) - Unity Asset Store. [online] Available at:

https://assetstore.unity.com/packages/tools/particles-effects/weather-maker-sky-weather-fog-volu

metric-light-and-dynamic-envir-60955 [Accessed 29 Jan. 2018].

GitHub. (2018). HIP. [online] Available at: https://github.com/ROCm-Developer-Tools/HIP [Accessed

11 Jan. 2018].

Msdn.microsoft.com. (2018). Coding Techniques and Programming Practices. [online] Available at:

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx [Accessed 11 Jan. 2018].

Unity. (2018). Unity. [online] Available at: https://unity3d.com/ [Accessed 11 Jan. 2018].

47

https://www.axosoft.com/
https://assetstore.unity.com/packages/tools/particles-effects/enviro-sky-and-weather-33963
https://assetstore.unity.com/packages/tools/particles-effects/time-of-day-weather-system-40374
https://assetstore.unity.com/packages/tools/particles-effects/unistorm-2714
https://assetstore.unity.com/packages/tools/particles-effects/weather-maker-sky-weather-fog-volumetric-light-and-dynamic-envir-60955
https://assetstore.unity.com/packages/tools/particles-effects/weather-maker-sky-weather-fog-volumetric-light-and-dynamic-envir-60955
https://github.com/ROCm-Developer-Tools/HIP
https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx
https://unity3d.com/

B2 - Stage Highlights

B.2.1 - Highlight Report 1

PRCO304: Highlight Report
Name: Sam Lord

Date: 06/02/2018

Review of work undertaken

A requirements document was produced to more clearly define the requirements of the

project.

A project github repo and the project management tool, Axosoft, was set up.

A prototype of the weather system was produced demonstrating particle effects being driven

by a procedural algorithm, with weather changing over time. This included a simple particle

management system for displaying the correct particle system for each weather type. This

prototype was driven by perlin noise and two values were produced representing the

humidity and temperature for a given x,y position in the game world. These two values were

used to calculate a weather type. For example, a high temperature and high humidity might

result in stormy weather whereas mid temperatures and mid humidity might produce sleet.

Real weather data collected from passive logging over the last year was compiled into a

single document to be used as reference for realistic weather transitions.

Plan of work for the next week

Develop detailed UML diagram and implement the base package structure from this design.

Design the user tests to be performed in each testing session.

Consider and document the various visual impacts that might be affected by changes in

weather and research by what methods developers are most likely to implement those in

games. For example, snow might be displayed by shader or particle effect. This will inform

some of the package structure.

Date(s) of supervisory meeting(s) since last Highlight

07/02/2018

Brief notes from supervisory meeting(s) since last Highlight

The use of real world data being used to inform the changes in the weather system was

discussed, and deemed to be a useful tool for judging the realism of the system.

Weekly meetings were decided upon for the immediate future.

The visual changes that might be impacted by weather changes were discussed alongside

the kind of control and customisation that will be offered to developers in the package’s final

version.

48

B.2.2 - Highlight Report 2

PRCO304: Highlight Report
Name: Sam Lord

Date: 14/02/2018

Review of work undertaken

A repository for the project proper was created with a custom gitignore, including a simple

readme and licence.

A UML was constructed in Visual Studio from which all the base classes were generated. The

classes were then edited to correct any inheritance errors, eg WeatherSet and WeatherEvent

were changed to inherit from ScriptableObject.

Custom editors were produced for dynamically adding WeatherTypes enums. Similarly a

custom editor was made for WeatherManager which will allow for dynamically switching

between procedural and manual modes in the editor. An editor for

A DoubleDictionary data structure was created which requires two keys, rather than the

usual one to lookup a value. This is the underlying data structure for

ProceduralWeatherLookup. Further, a ProceduralWeatherLookup editor was produced,

however serialization issues currently make it unusable.

The scripts and assets created so far were reorganised in Unity to make management easier

in the longer term. A new namespace was introduced, ‘WeatherSystem.Internal’, for the

inner workings of the system.

The user tests and visual implementation research that were scheduled for this sprint were

delayed to the next sprint in order to focus on bug fixes.

Plan of work for the next week

The user tests for the end of the next sprint (2 weeks time)

ProceduralWeatherLookup serialization in editor fix.

Procedural Weather implemented matching the functionality of the prototype.

Research into Unity’s curves system and whether that might be applicable to the weather

system’s manual mode.

Research by what methods developers are most likely to implement visual weather changes

in games.

Date(s) of supervisory meeting(s) since last Highlight

14/02/2018

Brief notes from supervisory meeting(s) since last Highlight

Discussed the possibility of subsystems for WeatherEvents whose intensity could be driven by

curves.

Discussed transitioning between weather types using curves.

49

B.2.3 - Highlight Report Stage 3

PRCO304: Highlight Report
Name: Sam Lord

Date: 22/02/2018

Review of work undertaken

The serialization issues experienced in the custom ProceduralWeatherLookup editor were

fixed. Similarly bugs in the WeatherTypes editor were fixed. Firstly, a null reference would be

caused when editor code was recompiled and secondly no edits would be possible until the

array was resized.

Noise generation functions were implemented based on the work conducted for the

prototype, including seeding. Further, basic noise-based wind represented by a Vector2 was

implemented and used to drive the sample location of the weather perlin noise map.

Some scripts were produced to visualise the noise generation and enable faster testing and

iterations.

Preliminary user test designs and weather system visualisation research were produced.

Plan of work for the next week

Research into Unity’s curves system and whether that might be applicable to the weather

system’s manual mode.

Further research by what methods developers are most likely to implement visual weather

changes in games.

Produce early MVP version of the weather system.

Date(s) of supervisory meeting(s) since last Highlight

[None]

Brief notes from supervisory meeting(s) since last Highlight

No meeting since last highlight

50

B.2.4 - Highlight Report Stage 4

PRCO304: Highlight Report
Name: Sam Lord

Date: 01/03/2018

Review of work undertaken

Did research into Unity’s curves system and implemented curves for intensity transitions for

weather changes.

Updated and added new weather events

Fixed weather transitions where weather would constantly loop between two weather types.

Implemented first WeatherManager weather queries for external objects to get weather at

their positions.

Added new visualisation in the form of ‘Weather Stations’ which display the type of weather

at their position and changes weather. Also created an accompanying distributor, which

spawns a number of stations.

Plan of work for the next week

Implement transitioning for WeatherSets, both procedural and manual

Implement manual WeatherEvents transitioning

Further extend transitioning including intensity driving internal values eg. visibility,

precipitation etc

User-test package

Date(s) of supervisory meeting(s) since last Highlight

27/02/2018

Brief notes from supervisory meeting(s) since last Highlight

Discussed the inclusion of internal weather values being driven by a single intensity value,

and Lerp-ing between WeatherEvents using intensity values

51

B.2.5 - Highlight Report Stage 5

PRCO304: Highlight Report
Name: Sam Lord

Date: 08/03/2018

Review of work undertaken

Introduced weather properties and reliant weather properties. Updated procedural weather

to use the same system. This allows for properties to be independently applied to each

WeatherEvent.

Imported a first person controller and volumetric lighting package. Also added Terrain from

a previous project.

Created a rain particle effect.

Added a new WeatherStation distributor for placing weather stations on the terrain.

Overhauled WeatherPropertys to use MonoBehaviours inheriting from

IntensityDrivenBehaviour which are found at runtime.

Added a new WeatherEvent editor for adding curves through to WeatherProperties objects

at runtime.

Plan of work for the next week

Complete manual weather mode implementation.

Add MonoBehaviour controllers for visual and audio control from WeatherEvents.

Add further visual and auditory implementations.

Add getting temperature and humidity values from a WeatherEvent at a particular position.

Date(s) of supervisory meeting(s) since last Highlight

08/03/2018

Brief notes from supervisory meeting(s) since last Highlight

Discussed progress this week. Also talked over adding visuals and audio alongside finishing

up the implementation of manual mode. Finally, discussed starting writing the report within

the next two weeks.

52

B.2.6 - Highlight Report Stage 6

PRCO304: Highlight Report
Name: Sam Lord

Date: 15/03/2018

Review of work undertaken

Made substantial progress in completing the manual weather implementation.

Almost all designed IntensityDrivenComponents added.

Added further visual and auditory implementations.

Investigated getting temperature and humidity values from a WeatherEvent at a particular

position.

Plan of work for the next week

Write up stages 1 to 6 for final report.

Write up Legal section for final report.

Complete temperature and humidity lookup for a weather event in manual weather mode

implementation.

Instance events implementation.

Date(s) of supervisory meeting(s) since last Highlight

13/03/2018

Brief notes from supervisory meeting(s) since last Highlight

Brief meeting discussing what writing should be delivered by next week.

53

B.2.7 - Highlight Report Stage 7

PRCO304: Highlight Report
Name: Sam Lord

Date: 22/03/2018

Review of work undertaken

Wrote up stages 1 to 6 for final report.

Did research for Legal section for final report.

Planned temperature and humidity reverse lookup for a weather event in manual weather

mode implementation.

Plan of work for the next week

Mind map for final report structure and content.

Fix editor bug and snap transitioning between WeatherEvents

Re-implement setting weather type enum for WeatherEvent in editor

Date(s) of supervisory meeting(s) since last Highlight

21/03/2018

Brief notes from supervisory meeting(s) since last Highlight

Discussed planning and structuring final report including how mind mapping can be useful.

54

Appendix C - Sprint Reviews

C.1 - Sprint Reviews

C.1.1 - Sprint 1 Review Document

Sprint Assessment

Sprint Number: 1 Start: 29/01/2018 End: 06/02/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 1

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Initalise project repo
with unity project

2 0.5 Y

Setup Axosoft 2 1 Y

Produce
Requirements

Document

2 1.5 Y

Throwaway prototype
of procedural weather

16 15 Y

Compile real weather
data in single

document for later
testing

2 2 Y

Total hours rolled over into next sprint: 0 hrs

55

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

N Prototype implementation
works well and will be

implemented into the final
product soon

Meet objective to be
extensible

N

Meet objective to be
queryable

N

Meet objective to be editor
friendly

N

Tests

Test Pass
(Y/N)

Notes

Additional Comments:

No testing performed this sprint as throwaway prototype was the only code produced.

56

C.1.2 - Sprint 2 Review Document

Sprint Assessment

Sprint Number: 2 Start: 07/02/2018 End: 14/02/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 2

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

New project
repository for actual

implementation

0.5 0.5 Y

Create base class
implementations

based on prototype

8 4 Y

Refresh editor code
knowledge through
implementation of

first editors

32 28 Y

Create object for
lookup using two

values -
“DoubleDictionary”

8 4 Y

Design user tests 8 0 N

Research common
implementations of
weather effects (eg
shaders vs particle

effects etc)

8 0 N

Total hours rolled over into next sprint: 16 hrs

57

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

N

Meet objective to be
extensible

N

Meet objective to be
queryable

N

Meet objective to be editor
friendly

N Custom editors first stage to
ensure this is met

Tests

Test Pass
(Y/N)

Notes

DoubleDictionary can add a
value

Y

DoubleDictionary can retrieve
a value with the correct lookup

keys

Y

DoubleDictionary can remove
a value given its keys

Y

DoubleDictionary returns true
when Trying to get a value is

successful and false otherwise

Y

Editor data is correctly
assigned to object

Y

On restarting the editor data
changes are still applied

N ProceduralWeatherLookup
does not correctly serialize the

DoubleDictionary data

Switching modes in the
WeatherManager editor
displays only pertinent

variables

Y

58

Additional Comments:

Further work to be completed to fix the serialization issues in the editor

59

C.1.3 - Sprint 3 Review Document

Sprint Assessment

Sprint Number: 3 Start: 15/02/2018 End: 22/02/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 3

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Design user tests 8 1 Y

Research common
implementations of
weather effects (eg
shaders vs particle

effects etc)

8 4 Y

Fix serialization issues
in WeatherLookup

editor

8 8 Y

Implement procedural
noise generation with

seeded values

16 16 Y

Develop tools to
test/visualise

procedural noise

8 8 Y

Total hours rolled over into next sprint: 0 hrs

60

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

N Not currently driving weather,
but procedural generation

core is largely complete

Meet objective to be
extensible

N Generation structure conforms
to OO principles

Meet objective to be
queryable

N At a low level, this is met.
However, not marked

complete as a
WeatherManager will act as an

intermediary for weather
queries

Meet objective to be editor
friendly

N

Tests

Test Pass
(Y/N)

Notes

Generated noise is
deterministic with seed

allowing changes to initial
state

Y This was tested with the noise
visualisations

Values produced by noise
change over time in a

believable way

Y

Noise is deterministic over
time (i.e same seed always

produces same sequences of
values)

Y

Values changed in custom
editors are stored when

opening and closing the editor

Y Fixed the bug that failed this
test last sprint

61

C.1.4 - Sprint 4 Review Document

Sprint Assessment

Sprint Number: 4 Start: 23/02/2018 End: 01/03/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 4

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Research unity curve
system

4 4 Y

Implement
WeatherEvent

hierarchy

32 32 Y

Implement Weather
transitions with
lerping intensity

4 4 Y

Develop “weather
stations” to display
weather at various

location

2 1.5 Y

Total hours rolled over into next sprint: 0 hrs

62

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y With the addition of
Weatherevents, the

procedural noise is now driving
the selection and transition of

weather events

Meet objective to be
extensible

N

Meet objective to be
queryable

N

Meet objective to be editor
friendly

N

Tests

Test Pass
(Y/N)

Notes

Intensity gradually transitions
between values during

transitions

Y

Weather station values update
over the course of weather

changes

Y

Intensity values filter down to
the lowest hierarchy members

Y

Intensity changes during
transitions are affected by

changes to the curve

Y

Additional Comments:

63

C.1.5 - Sprint 5 Review Document

Sprint Assessment

Sprint Number: 5 Start: 02/03/2018 End: 08/03/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 5

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Implement weather
properties as a child in

the Weatherevent
hierarchy that are also

driven by intensity
values

8 15 Y

Test potential demo
controllers and

scenery

4 8 Y

Create a particle
effect to be later

driven by a weather
property

4 3.5 Y

Add WeatherEvent
editor for curve
application via

weather properties

4 2 Y

Total hours rolled over into next sprint: 0 hrs

64

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y The addition of weather
properties and weather events
means that extensibility should

be possible/reasonable from
this point forward

Meet objective to be
queryable

N

Meet objective to be editor
friendly

N

Tests

Test Pass
(Y/N)

Notes

Weather properties should
correctly be found at runtime
by intensity monobehaviours

Y

Weatherevent editor allows
curves to be applied on a
weather-properties basis

Y

Weather event transition
intensity is fed down to new

lowest level of hierarchy

Y

Additional Comments:

65

C.1.6 - Sprint 6 Review Document

Sprint Assessment

Sprint Number: 6 Start: 09/03/2018 End: 15/03/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 6

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Manual weather
mode implementation

16 25 N

Add
IntensityDrivenCompo

nents for particle
effects, shaders and

audio

8 7.5 N

Add shaders, particle
effects and audio to

be driven by new
components

8 8 N

Reverse lookup of
weather and humidity
values at a given point

16 2 N

Total hours rolled over into next sprint: 16 hrs

66

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y Structure of new intensity
components further this

requirement

Meet objective to be
queryable

N Requirement furthered
through the inclusion of

manual weather intensities
being queryable

Meet objective to be editor
friendly

N

Tests

Test Pass
(Y/N)

Notes

Manual weather timing
matches that set in the editor

Y

Adding new manual weather
should not affect existing
manual weather events

Y

Intensity of manual weather
events can be set using curves
in the editor to vary over time

Y

Intensity of manual weather
should be queryable in the
same manner as procedural

weather

Y

IntensityDrivenComponents
vary the values of their

respective objects correctly

Y These could be further worked
on to be more realistic but for

testing are perfectly fine

67

Additional Comments:

68

C.1.7 - Sprint 7 Review Document

Sprint Assessment

Sprint Number: 7 Start: 16/03/2018 End: 22/03/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 7

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Manual weather
mode implementation

5 2 Y

Add
IntensityDrivenCompo

nents for particle
effects, shaders and

audio

2 1 Y

Add shaders, particle
effects and audio to

be driven by new
components

2 1.5 Y

Reverse lookup of
weather and humidity
values at a given point

14 2 N

Stages write up for
final report

4 3 N

Legal section research
for final report

2 1 Y

Total hours rolled over into next sprint: 10 hrs

69

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y Structure of new intensity
components further this

requirement

Meet objective to be
queryable

N Requirement furthered
through the inclusion of

manual weather intensities
being queryable

Meet objective to be editor
friendly

N

Tests

Test Pass
(Y/N)

Notes

Manual weather timing
matches that set in the editor

Y

Adding new manual weather
should not affect existing
manual weather events

Y

Intensity of manual weather
events can be set using curves
in the editor to vary over time

Y

Intensity of manual weather
should be queryable in the
same manner as procedural

weather

Y

Additional Comments:

70

C.1.8 - Sprint 8 Review Document

Sprint Assessment

Sprint Number: 8 Start: 23/03/2018 End: 29/03/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 8

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Reverse lookup of
weather and humidity
values at a given point

14 8 Y

Stages write up for
final report

1 1 Y

Tree generation 4 6 Y

Time Extension 4 3 Y

Consolidate editor
functionality to parent

class

2 3 Y

Total hours rolled over into next sprint: 0 hrs

71

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y

Meet objective to be
queryable

N

Meet objective to be editor
friendly

Y OO-compliant structure of
editor scripts and bug fixes

Tests

Test Pass
(Y/N)

Notes

Editor scripts functionality
should be unchanged

Y

Weather functionality should
be unchanged in relation to

time extension
implementation

Y

Reverse lookup of values in the
DoubleDictionary should

behave in the same way as a
normal Dictionary

Y Tested retrieving existant and
non existant values with

expected results.

Additional Comments:

72

C.1.9 - Sprint 9 Review Document

Sprint Assessment

Sprint Number: 9 Start: 30/04/2018 End: 12/04/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 9

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Weather transition
callback delegates

4 4 Y

More data passed
through intensity

hierarchy

16 14.5 Y

Snow particle system 4 1.5 Y

Snow shader 8 7.5 Y

Conditional intensity
driven behaviours

using new hierarchy
structure

4 3.5 ~Y

Total hours rolled over into next sprint: 0 hrs

73

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y

Meet objective to be
queryable

Y Call back delegates alongside
previously implemented

methods on Weather manager

Meet objective to be editor
friendly

Y

Tests

Test Pass
(Y/N)

Notes

Callback delegates pass
through correct values

Y

Callback delegates do not
cause null ref exceptions when

no callbacks registered

Y

Example “Weather
Announcer” script using

delegates to test

Y

Intensity data hierarchy
changes results in same
behaviour as previously

Y

Conditional behaviour
implementation (snow/rain)
using new data only occurs

when condition met

N Largely this works, some
restructuring needs to be done
to ensure that disabling works
as expected. May also affect

other behaviours - more
testing required

Snow particle effect and Y

74

shader controllable by
intensity driven behaviour

Additional Comments:

75

C.1.10 - Sprint 10 Review Document

Sprint Assessment

Sprint Number: 10 Start: 13/04/2018 End: 03/05/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 10

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Fix snapping weather
bug

8 32 Y

Update hierarchy
curves

4 3.5 Y

Conditional intensity
driven behaviours

disable behaviour fix

4 4 Y

Total hours rolled over into next sprint: 0 hrs

76

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y

Meet objective to be
queryable

Y

Meet objective to be editor
friendly

Y

Tests

Test Pass
(Y/N)

Notes

Weather transitions should be
gradual

Y

Previously active weather
should reactivate in a

non-sudden way

Y

Weather curves should result
in believable weather

visualisations

Y

Conditional behaviour
implementation disable should
result in the behaviour fading

out to zero

Y

Additional Comments:

77

C.1.11 - Sprint 11 Review Document

Sprint Assessment

Sprint Number: 11 Start: 04/05/2018 End: 17/05/2018

Axosoft Stage Reference: https://samlord.axosoft.com V1.0/Stage 11

Goal Completion

Goals Time Allocated
(hrs)

Time Used
(hrs)

Complete
(Y/N)

Instance events
implementation - use

noise generator to
ensure deterministic

4 3 Y

Further refinement of
snapping issue

8 9 Y

Volumetric lighting
snapping fix

8 6 Y

Visual and audio for
all weather events

16 14 Y

Integration with Unity
WindZones

8 7 Y

Queryability of wind
and intensity values

2 1 Y

Weather info UI
display

2 1 Y

Seed setting through
weather manager

2 0.5 Y

Update
documentation

4 2 Y

Total hours rolled over into next sprint: 0 hrs

78

https://samlord.axosoft.com/

Objectives

Objective Achieved
(Y/N)

Notes

Meet objective to be
procedural

Y

Meet objective to be
extensible

Y

Meet objective to be
queryable

Y

Meet objective to be editor
friendly

Y

Tests

Test Pass
(Y/N)

Notes

Gradual transitions of all
weather events

Y

No snapping for volumetric
light controller

Y

All weather events have audio
and visual representation

Y

Wind zone direction and
intensity matches generated

wind value

Y

Wind and intensity values
available through
WeatherManager

Y

Random and set seeds through
weather manager

Y

Live weather data shown on
screen as text

Y

All classes and methods XML Y Could be extended with

79

commented namespace XML
documentation

Additional Comments:

80

Appendix D - Requirements

D.1 - Weather System Requirements Document

Weather System Requirements

Background and Strategic Fit

This project aims to offer an open-source

alternative to the complex and expensive

or the cheap but overly simplified

weather systems for Unity. The project

will be made public from a github repo

once the target release has been met.

Requirements

81

Not Delivering

● Photorealistic assets within the package

● Simulation-level realism

82

D.2 - Weather System Requirements and Deliverables Met Document

Weather System Requirements and

Deliverables Met

Background and Strategic Fit

This project aims to offer an open-source

alternative to the complex and expensive

or the cheap but overly simplified

weather systems for Unity. The project

will be made public from a github repo

once the target release has been met.

Requirements

✓ Be free, open-source and reusable without limitation

✓ Be procedural

✓ Will provide a platform from which weather patterns can be new and interesting on

each playthrough of any game using the system.

✓ Will be seeded and therefore will generate reproducible weather patterns at the

discretion of the developer, and enable easier testing.

✓ Weather will vary across the game world at any given moment, adding more realism.

This is in contrast to the researched products which unanimously had ubiquitous

weather throughout the game world.

✓ Be extensible

✓ Will be designed so as to be extensible by developers using the platform.

✓ Will be well documented so as to be easy to use for other developers.

✓ Be queryable

✓ Will allow developers to request information about the weather at specific locations

and times. This allow for games which use information such as temperature to, for

example, change the look of the player or environment in different conditions or

provide information to survival-like games.

✓ Be Unity Editor friendly

✓ Changes to initialization values will not require editing code and will be available as

sliders/editable text boxes in the Editor.

✓ As and when required, custom editors may be written to automate repetitive tasks.

Deliverables

✓ The following weather processes will be included in the platform: Clear sky, rain, storms,

snow, overcast and integration with Unity’s wind zones. The weather system will be

83

produced in C# as a package for Unity Game Engine. The weather system will control particle

and audio effects alongside simple shaders and lighting.

✓ The product will not be a simulation, however it will take inspiration from weather

simulation and historical data. For example, historical weather data may be analysed to

determine the chance of one type of weather leading to another and this may inform the

balancing of the system. This will enable an immersive experience to players through

realistic transitions between weather states.

✓ The product will be cross platform (Windows/OSX) compatible, both for

editing/development and gameplay.

✓ An example demo implementation utilising the package will be produced in Unity Game

Engine (Unity, 2018) for Windows. The demo will allow a first person perspective view of a

game world that has the produced weather package integrated, showing weather

information at the players current position on screen whilst visual weather effects can also

be seen.

84

Appendix E - Weather Data

E.1 - All Weather Data

Available online at

https://docs.google.com/spreadsheets/d/101wARLrJ-Nrzy9eb3_HxxPacZr8-_j3YiMVtAjFCViU/edit?us

p=sharing

E.2 - Procedurally Generated Weather Data Summary Tables

E.2.1 - Procedurally Generated Weather, Wind Strength 1

Weather Type Count Percentage

Overcast 22 61.11111111

Rain 4 11.11111111

Clear 3 8.333333333

Snow 0 0

Storm 2 5.555555556

Hail 5 13.88888889

E.2.2 - Procedurally Generated Weather, Wind Strength 5

Weather Type Count Percentage

Overcast 30 48.38709677

Rain 5 8.064516129

Clear 8 12.90322581

Snow 1 1.612903226

Storm 1 1.612903226

Hail 17 27.41935484

E.2.3 - Procedurally Generated Weather, Wind Strength 10

Weather Type Count Percentage

Overcast 44 34.92063492

Rain 29 23.01587302

85

https://docs.google.com/spreadsheets/d/101wARLrJ-Nrzy9eb3_HxxPacZr8-_j3YiMVtAjFCViU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/101wARLrJ-Nrzy9eb3_HxxPacZr8-_j3YiMVtAjFCViU/edit?usp=sharing

Clear 20 15.87301587

Snow 12 9.523809524

Storm 2 1.587301587

Hail 19 15.07936508

E.2.4 - Procedurally Generated Weather, Wind Strength 10

Weather Type Count Percentage

Overcast 44 34.92063492

Rain 29 23.01587302

Clear 20 15.87301587

Snow 12 9.523809524

Storm 2 1.587301587

Hail 19 15.07936508

E.2.5 - Real-World Weather

Weather Type Count Percentage

Cloud 646 32.3

Rain 459 22.95

Fair 656 32.8

Snow 15 0.75

Storm 1 0.05

Hail 0 0

E.2.6 - Weather Comparison Table

Weather

Type

Real

World

Data

Simulation (Wind

strength 1)

Simulation (Wind

strength 5)

Simulation (Wind

strength 10)

Simulatio

n Average

Differenc

e

Cloud 32.3 61.11111111 48.38709677 34.92063492 48.1 15.8

Rain 22.95 11.11111111 8.064516129 23.01587302 14.1 8.9

Fair 32.8 8.333333333 12.90322581 15.87301587 12.4 20.4

Snow 0.75 0 1.612903226 9.523809524 3.7 3.0

Storm 0.05 5.555555556 1.612903226 1.587301587 2.9 2.9

Hail 0 13.88888889 27.41935484 15.07936508 18.8 18.8

Other 11.15 0 0 0 0.0 30.2

86

Appendix F - Usability Questionnaire Data

F.1 - Responses Summary Table

Respondent

How

navigable do

you find the

documentatio

n?

How

queryable is

the

WeatherMan

ager in your

opinion?

How

believable is

the produced

weather?

To what

extent is the

system

procedural in

your opinion?

How

extensible in

the system in

your opinion?

How

editor-friendly is

the system?

1 9 8 7 10 8 7

2 7 7 8 10 8 7

2 5 7 6 10 8 5

3 6 6 8 7 5 7

4 7 7 4 8 6 9

Average 6.8 7 6.6 9 7 7

Percentage 68.00% 70.00% 66.00% 90.00% 70.00% 70.00%

87

Appendix G - Best Practice Documents

G.1 - Coding Best Practice Document
Coding Best Practices

PascalCase

For methods, functions, classes and

namespaces.

camelCase

For variables.

Namespaces

Use them! Sensible naming, PascalCase.

If statements

Single line if statements must use ‘{ }’

French/Curly Braces { }

As above in the image, ‘{ }’ brackets should be on a line of their own - this applies for classes,

methods, for loops, while loops, foreach loops etc

OO Techniques

Basically - if you can abstract something that is likely to be used in a similar way elsewhere, abstract

it.

Encapsulate classes. This provides specific entry points for classes and protects the inner workings

(including data) of a class.

Design

Do not dive straight into coding a large system - take some time to at least do a class diagram and

think through how the system will interact with other systems. See OO Techniques.

Class diagrams should be annotated where appropriate.

Descriptive variable names

Refrain from using one character variable names with the exception of variables used to iterate

through a collection (i = 0 etc). Variable names should adequately describe their purpose.

Documentation

88

All classes and methods should have XML-documentation (type ‘///’ above what you’re

documenting). Also, any code that may be unclear to others, does something especially complicated

or would benefit from a comment(s) - comment it! See below for example (note the difference in

readability between up to line 18 and after). Also see variable name specification.

See also

Microsoft’s best practices (This document you’re reading right now takes priority in the case of

contradiction).

89

https://msdn.microsoft.com/en-us/library/aa260844(v=vs.60).aspx

Appendix H - Licences

H.1 - MIT Licence Template
Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

90

